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A term containing the transfer coefficient that is a function of the
potential is isolated in the transfer equations, In mathematical simu-
lation on electrical network models this method makes it possible to
reduce the number of nonlinear elements and significantly to simplify
the method of solving the nonlinear transfer equations on combined
electrical models,

In the electrical simulation of solutions for nonlinear
equations of energy and mass transfer on electrical
network models it is necessary during the course of
the solution to change the electrical resistances simu-
lating the thermal resistances (R,) of the thermal con-
ductivity to take into consideration the relationship
between the transfer coefficients and the potential. To
simplify the calculation we will examine the nonlinear
equation of nonsteady heat conduction, written in a
rectangular coordinate system:
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although all that follows is applicable to the heat-con-
duction equation in any coordinate system as well as
for a system of nonlinear equations of energy and mass
transfer [1].

The nodes of the resistance networks (R networks)
or resistance and capacitance networks (R-C networks)
may be situated at the corners or within the space. The
form of notation for the expression to calculate the
parameters, for example, of the R networks, does not
change in this case [2]. If the nodes of the R networks
are situated within the space,
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where h;). is the distance from the node to the boundary
of the volume element. If the nodes of the R network
are situated at the corners,

Ry = Ry (2x
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where by is the distance between the network nodes.
Rt and Ry, are calculated from (2) and (3), but as in
the case of (4), in this case hjik is the distance between
the nodes.

In solving problems of R-C networks we calculate
the resistances Ry from (1) or (5), and the magnitudes
of the capacitances and the values for the currents re-
spectively simulating the thermal capacities and heat
sources are determined in a corresponding way,

In solving problems with A = A(T) on combined
models [3] where the resistances Ry are made of an
electrically conductive continuous medium, the achieve-
ment of the condition A = A(T), particularly in the solu-
tion of nonsteady problems, complicates the solution
to such an extent that the combined models are used in
practical terms only when A = const. Below we present
a method which makes it possible in the solution of
nonlinear problems when A = A(T) to use constant re-
sistances for Ry in R and R-C networks in the place of
variable resistances, or to use plates of constant elec-
trical conductivity in combined models,

For the one~dimensional problem, Eq, (1) has the
form
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We write (6) in the form
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where a =A/cy; A, ¢, and y, just as w, are functions
of T. The expressions for the calculation of the R-net-
work parameters, proceeding from (7), are derived

in the same manner as in {2], and have the form

R), = Ry, (8)
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Here hj is the distance from the node to the boundaries
of the segment, since (8)—(10) are written for the case
in which the nodes are situated within the element. The
expressions for Ry, Ry, and Ry are written analo-
gously if the nodes are situated at the corners.

The body resistances R, are independent of A, while
the magnitudes of the variable resistances Rw, in this
approach to the solution of the nonlinear problems de-
pend at each step on the values of A(T), w(T), 1/8T,
and 8T/5x. If 970/9T is not given analytically as a func-
tion of T, proceeding from a graph or table for A(T),
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we find
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The more exact approximation of the broken line for
the function A(T), the more exact the determination
from (11) of 93/8T for each value of the temperature
Tn = (Tp-y + Tn+y)/2.

The derivative 9T/6x is defined as
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To determine the values of A, w, 92/8T, and 9T/6x
we must have the temperature field of the previous
approximation. Then proposed method does not differ
in this from the conventional method of solving non-
linear problems on R networks.

For one-dimensional problems in which A = \(x),
all other conditions being equal, we find from (6)
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Then R; and R{ will have the form of (7) and (8), while

N ‘L’*ﬁ] 22;1[ }“1. (14)
=l

= VT
R, = (Vy—V) KRN{[ 22

On a network of constant resistances for Ry orona
combined model this approach makes it possible to
solve one~dimensional problems in which A = A(x); ¢,
v, and w are functions of x and T,

When A = A(T), just as (8)—(10) were derived, pro-
ceeding from (1), it is possible to derive the param-
eters of the networks solving the three-dimensional
problems. For R networks with nodes within the vol-
ume
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We denote in (17) the expression in brackets by w'.
For R-C networks (nodes within the volume) R;'\ is
defined from (15)
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where 7 is the time scale.
The method of calculating resistances for the solu-~
tion of problems on combined models is covered in
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[3,4]. The resistances, current, and capacitancesfor
combined models are calculated according to expres-
sions analogous to (15)—(19), with the difference that
the quantity Ry will be a function of the specific re-
sistance of the conducting plate (or the electrolyte
layer). If there are not heat sources in (1), w in (10),
(14), (17), and (18) should be assumed to be equal to
zero. The total number of resistances in the solution
of problems on R networks will then increase to a
number equal to the number of network nodes, but the
number of variable resistances required for the solu-
tion of a nonlinear problem in comparison with the
case in which the resistances have been calculated
according to (2)—(5) is reduced. In the solution of non-
linear problems on R-C networks according to the
method described here for w = 0 additional currents
will be applied to the nodes, with the magnitude of
these currents determined from (18), but all of the
resistances R, will be constant during the solution
process. The advantages of this method in the solution
of nonlinear transfer problems when w = 0 are obvious
for combined models as well, despite the fact that ad-
ditional resistances are necessary for solutions by the
Libmann method (R) or additional currents in the case
of solutions by the Boiken method (C).

In the solution of nonsteady problems it is possible
to avoid the introduction of additional resistances or
currents into the combined models when w = 0, if ex-
pressions of the type (1/A)(8T/9A)(8T/0x)? are intro-
duced into (16) or into (19) as follows:
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In this case 6T/t should be substituted into (20) and
(21), proceeding from the functions T = T(t) for the
given node, derived in the previous approximations.

In all earlier cases the calculation of the resistances
simulating the boundary conditions is carried out in
the manner of [2—4]. The derivation of the param-
eters for the networks or for the combined models in
no way differs from the case presented above, inwhich
the solution of a system of nonlinear equations of ener-
gy and mass transfer is simulated [1]. The general
approach to the solution of such a system, e.g., in the
case of the transfer of heat and moisture in bulk grain,
is given in [5], but the equations should be modified in
the manner of (1) or (6) above.

A one-dimensional nonlinear steady problem with
an exact analytical solution was solved according to
our method on an electrical model of an R network:

The problem is formulated as follows:
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The solution has the form
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In our example 6 = 0.2 m, T;=625°C, T, =0°C,
Ao = 0.1, b = 0.0016.

The R network for a plate divided into eight segments
consisted of constant (R,) and variable (Ry,) resist-
ances of class 0.2, The measuring circuit was pro-
vided by a series-production integrator of the EGDA~
9/60 type.

The first approximation (R, off) yields the linear
distribution of temperature in the plate, i.e., the so-
lution with A = const.

In second approximation the R",V calculated accord-
ing to (10) for w = 0, are connected to the nodes of the
model; the maximum voltage Vy, is applied to the ends
of Ryy.

The results of the first approximation made it pos-
sible to evaluate the total error in the measurement.
Multiple repetitions of the experiment demonstrated
that in our example this error did not exceed x£0.05%
of the maximum voltage value, which amounted to
+0.3°. The results of the second approximation made
it possible to ascertain the error in this method in
comparison with the exact analytical solution accord-
ing to (22). After the second approximation the maxi-
mum error did not exceed =1,4%, i.e., +8.8°,

After the second approximation correction factors
were introduced for Ry and the third approximation
demonstrated that the maximum error in comparison
with the solution according to (22) did not exceed
£0.1%, i.e., +0.6°,

We know that even the second approximation yields
satisfactory accuracy, while the third approximation
makes it possible to achieve a solution for the non-
linear problem with an accuracy that is close to the
accuracy of the measuring devices in the series-pro-
duced integrators of the EGDA, EI, MSM type, etc.

The proposed method may be used for the solution
of nonlinear problems not only on R and R-C networks
and on combined electrical models, but also in the
solution of nonlinear problems on electrical models
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with a distributed capacitance [6], on hydraulic inte-
grators of various designs, as well as in the solution
of (1) by analytical or numerical methods.

It is obvious that the greatest advantages of the
proposed method arise in the solution of nonlinear
problems on combined models.

NOTATION

Ry, R¢, and Ry, are electrical resistances, with
the help of which it is possible to simulate thermal re-
sistances of thermal conductivity, heat capacity and
heat sources, respectively; Ry is the scale of transi-
tion from thermal to electrical resistances; T is the
temperature; t is the time; A, ¢, and y are the thermal
conductivity, specific heat capacity by weight, and
specific weight, respectively; w is the source (sink)
of heat; Vy, is the maximum (minimum) value of volt-
age; V is the voltage in a given assembly at a given
time; K is the scale of transition from temperatures
to voltages; I and C are the current and capacity simu-
lating a heat flux w and heat capacity of an element,
respectively.
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